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Stereoselective Yang cyclizations of a-amido ketones
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The photocyclization of methyl-substituted a-acetamido
butyrophenone derivatives is highly stereoselective and
leads to 2-aminocyclobutanols with complete control of
three new stereogenic centers.

The term Yang cyclization describes the formation of cyclobu-
tanols from 1-hydroxytetramethylene biradicals which are
produced via photochemical g-hydrogen abstraction.1 In the
course of this reaction up to eight diastereoisomers could be
formed from one chiral substrate molecule. Three subsequent
steps influence the chemo- and stereoselectivity of this reaction:
(i) g-H abstraction, (ii) biradical dynamics and (iii) biradical
combination vs. cleavage reaction. Triplet excited carbonyls
give rise to triplet 1,4-biradicals and, consequently, the lifetime
of these intermediates (100–1000 ns)2 rises due to slow spin
inversion processes (ISC). The g-H abstraction proceeds most
likely through a six-membered chair-like transition state.3
Detailed mechanistic investigations have been performed by
Wagner and co-workers which also included stereochemical
probing.4 During our studies on photochemical transformations
of enantiomerically pure a-amino acids (N-activation mode)5

we became interested in using Yang cyclizations as a simple
tool for the synthesis of 2-aminocyclobutanols (C-activation
mode). As substrates a-acetamido butyrophenone derivatives
1a–f were synthesized from the corresponding amino acids by a
three-step reaction protocol.6 The photochemical behaviour of
these compounds was investigated by irradiation with light l >
320 nm in benzene solutions (Scheme 1). The tert-leucine
derivative 1a gave the cyclobutanol 2a (FC = 0.11 ± 0.02) and
the Norrish II fragmentation product 3 (FF = 0.08 ± 0.02).7 The
Yang cyclization product was isolated in 45% yield as a single

diastereoisomer. The tert-leucine 1a and the leucine derivative
1b, respectively, were transformed into cyclobutanols with only
one additional stereogenic center and thus solely show the
influence of a given stereogenic center on a proximate radical
center. In both cases, the cis-diastereoisomers were formed with
ds > 96%. 

Characteristic NMR shifts were observed for H-2 (d 4.2–4.8)
and the methyl groups in 2b which showed strong anisotropic
effects (Dd = 0.45 ppm).8 Additional proof came from the X-
ray structure analysis for 2b (Fig. 1).† A reasonable explanation
for the high 1,2-asymmetric induction might be an intra-
molecular hydrogen bond at the stage of the triplet 1,4-biradical
which has already been described for Yang cyclizations of a-
ester-substituted ketones.9 The valine derivative 1c cyclized
more efficiently (FC = 0.19 ± 0.02) and gave the cyclobutanol
2c in 74% yield with ds > 96%. The relative configuration was
established via X-ray structure analysis.† Two explanations for
the high 1,3-asymmetric induction are possible: selective g-H
abstraction from one of the diastereotopic methyl groups or
non-selective g-H abstraction followed by selection at the
biradical stage (radical combination vs. cleavage and/or hydro-
gen back transfer). Biradical dynamics most likely were
responsible for the results obtained with the isoleucine and
alloisoleucine derivatives (2S,3S)-1d and (2R,3S)-1d. Whereas
the (2S,3S)-isomer gave exclusively the Norrish II cleavage
product 3, (2R,3S)-1d cyclized efficiently to give the cyclobuta-
nol 2d. The latter compound again was formed diastereoisomer-
ically pure (i.e. ds > 96%) with complete control of the three
newly formed stereogenic centers. X-Ray structure analysis
completed the configuration analysis.†

Finally, the unbranched substrates 2e and 2f (from norvaline
and norleucine, respectively) were investigated. Both substrates
preferentially showed fragmentation and, as a minor reaction
path, formation of the cyclobutanols 2e,f with excellent
diastereoselectivity. Thus, the radical coupling step also
proceeds with high inherent stereoselectivity in addition to the
1,2-induced stereoselectivity.

In the mechanistic scenario (vide supra) for the Yang
cyclization process induced and inherent diastereoselectivity
are related to two different steps: biradical dynamics and spin
inversion coupled with radical-radical combination. This rela-
tion is depicted in Scheme 2 for substrate (2R,3S)-2d. After
hydrogen abstraction from the more reactive methylene group,
equilibration of the triplet 1,4-biradical leads to three possible
conformers, anti, syn and synA. The energies of these species
were calculated using the PM3 method. The cyclization path is
not available from the anti-isomer, however, this structure is
less favourable compared with the syn-isomer. HydrogenScheme 1 C/F = cyclization/fragmentation ratio.

Fig. 1 Crystal structures of the cyclobutanols 2b, 2c and 2d.
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bonding stabilizes all three possible conformers and is the major
contribution to the high 1,2-asymmetric induction.

The reverse is the case for (2S,3S)-2d and fragmentation
dominates the reaction due to the more stable triplet anti
1,4-biradical. This theory however, does not take into account
the fact that the calculated biradical minima structures are not
necessarily identical with the actual ISC-reactive structures.
Spin–orbit coupling, the major contribution to triplet/singlet
ISC, is higher for syn-biradicals10 and depends on the
orientation of the p-orbitals localized at the spin-bearing carbon
atoms.11 An orthogonal orientation of these orbitals prior to C–
C bond formation leads to a trans arrangement of the methyl at
C-4 and the tolyl group at C-1 (inherent diastereoselectivity).
Thus, the induced and inherent stereoselectivity of the Yang
cyclization can be correlated with different selection stages of
the reaction.
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Notes and references
† Crystal data for 2b: C15H21NO2·1/2H2O (from MeOH), M = 256.3,
monoclinic, a = 12.840(1), b = 18.077(1), c = 12.920(1) Å, b = 90.62(1)°,
space group C2/c, Mo-Ka, 11448 reflections measured, 1748 reflections
with I > 2s(I), R1 = 0.058, wR2 = 0.117.  For 2c: C14H19NO2 (from
MeOH), M = 233.3, monoclinic, a = 7.459(1), b = 11.63(2), c = 15.652(3)
Å, b = 102.67(2)°, space group P21/c, Mo-Ka, 2478 reflections measured,
1202 reflections with I > 2s(I), R1 = 0.064 , wR2 = 0.119. For 2d:
C15H21NO2 (from MeOH), M = 247.33, orthorhombic, a = 7.546(1), b =
11.848(1), c = 15.712(1) Å, space group P212121, Mo-Ka, 3096 reflections
measured, 1942 reflections with I > 2s(I), R1 = 0.050, wR2 = 0.099.
CCDC 182/1248. See http://www.rsc.org/suppdata/cc/1999/1109/ for crys-
tallographic files in .cif format.
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Scheme 2 Mechanistic scenario for the photocyclization of (2R,3S)-1d.
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